94-1 Core Technology Corrosion Research

Dave Kolman (NMT-15) Rene Chavarria (NMT-15)

Mail Stop G755

Materials Corrosion and Environmental Effects Laboratory
Los Alamos National Laboratory
Los Alamos, NM, USA 87545

94-1 Core Technology Budget

- * How this work fits into 94-1 Core Technology:
 - ♦ Materials ID
 - **♦** Stabilization
- → Packaging
- → Storage
- → Surveillance
- Customer: All sites where material will be packaged
- Current Budget \$354k
 - ♦ NMT-15 (aqueous corrosion, SCC, Ga)
 - ♦ MST-6 atmospheric corrosion testing
- Work is on schedule and on budget

FY 00 94-1 Core Technology Corrosion

3013 Container Activities:

- ♦ Chloride-induced failure
- **♦** Shelf-life tests

Stress Corrosion Cracking of 3013 Containers (UCB):

♦ Conclusion of work 4/30/00

Complex-wide Consulting:

- ♦ MIS working group
- ♦ 3013 Standard
- ♦ Container failure at SRTC

Corrosion Milestones / Deliverables

- Submit at least one refereed journal article (9/30/00)
- ❖ Determine atmospheric conditions within container which result in localized corrosion
 - ♦ Design, build, operate atmospheric chamber (1/31/00)
 - → Perform tests using different dewpoint / temperature combinations (9/30/00)
 - ♦ Report on results (MIS meetings) and author report at finish (FY 01?)
- Establish effect of Ga on LME susceptibility of containers
 - ♦ Make servohydraulic operable (11/30/00)
 - ♦ Establish testing procedure (3/31/00)
 - ❖ Report on results (MIS meetings) and author report at finish (FY 01?)
- Shelf-life corrosion studies
 - ♦ Design, build, calibrate atmospheric corrosion rate monitors (1/31/00)
 - ❖ Perform corrosion rate studies on shelf-life packages (ongoing)
 - ❖ Report on results (MIS meetings) and author report at finish (?)

Corrosion Milestones / Deliverables

- **❖** Assess RFETS laser welds
 - ◆ Compare corrosion performance of welded and as-received container materials (3/31/00)
 - ♦ Assess sensitization level of welds (3/31/00)
 - ♦ Compare stress corrosion cracking performance of welded and asreceived container materials (9/30/00)
 - ❖ Report on results (MIS meetings) and author report (9/30/00)
- **Examine the effect of stress on SCC of 316 SS**
 - \Rightarrow Produce thin film samples (4/30/00)
 - → Test samples using concurrent SERS and mechanical testing (4/30/00)
 - ❖ Report on results in M.S. thesis and refereed journal articles (4/30/00)

Background

- * The problem: There is concern that storage containers will not be suitable for 50 year storage of Pu compounds.
- ❖ DOE-STD-3013-99 states that containers incorporate 30 wt% to 100 wt% Pu (< 19W). The containers may also incorporate:
 - ♦ Ga bearing compounds from weapons Pu
 - \Rightarrow Water (up to **0.5 wt%**) / H₂ / O₂
 - ♦ Salts / chlorinated compounds

 - ♦ Ionizing radiation
 - ♦ Welds (inner and outer containers)
- * Expected container materials:
 - ♦ Outer: 316L "Pressure Vessel". 1 or 2 welds.
 - ♦ Inner: 316 SS. Laser cut and laser welded.
 - ♦ Convenience container (for metal): 304L body, 416 lid.
 - ♦ Convenience container (for oxide): 316 body, 416 lid.

Background

- * Complex-wide experience suggests that significant problems will not occur. However, not all compounds have been stored and stored compounds have not necessarily experienced expected thermal conditions.
- ❖ Out of 113 RFETS containers, only four have shown evidence of corrosion attack.

Can No.	Packaging Date	Source of Salt	Moisture	Corrosion
D17290	4/17/80	MSE	1.5%	Rust
D77584	9/30/91	ER	1.6%	Rust
2904061	4/25/88	DOR	1.8%	Slight Rust
D37748	9/30/83	DOR	0.6%	Slight Rust

3013 Containers -Potential Failure Mechanisms

Corrosion:

$$\Rightarrow$$
 H₂O

- → H₂O Radiolysis Products
- ♦ Molten Salt
- → Sensitization (Thermal or Radiation-Induced)
- → ♦ Weld
 - ***** Embrittlement:
 - **♦** Radiation
 - $\Leftrightarrow H_2$
 - ♦ Weld
 - **♦** Transmutation

- Environmental Cracking:
- \Leftrightarrow "Conventional" $H_2O / O_2 / Cl^- / O_2 / Cl^- / O_2 / Cl^- / O_2 /$
 - Cl₂ / HCl
- → ♦ Welds
- → ♦ Ga Metal Embrittlement
 - ♦ Molten Salt
- → Sensitization (Thermal or Radiation-Induced)
 - * Alloying:
- → ♦ Ga / Fe
 - ♦ Pu / Fe

Absolute Corrosion Susceptibility

Assuming:

- ♦ All water is <u>free</u> to vaporize
- ♦ 2700 cm³ interior volume

Laser & TIG Weld Sensitization

❖ Determine sensitization level of of RFETS laser weld using a standard test (SLEPR)

 $316 \text{ SS}, 30^{\circ}\text{C}, 0.5 \text{ M H}_{2}\text{SO}_{4} + 0.01 \text{ M KSCN}$

Shelf-Life: In-Situ Corrosion Monitoring

- Atmospheric corrosion rate monitor (ACRM)
 - ♦ Linear Polarization Resistance
 - → Electrochemical Impedance Spectroscopy

Stress Corrosion Cracking

- * All of the components required for stress corrosion cracking of austenitic stainless steels are present:
 - ♦ Water (vapor and possibly liquid)
 - **♦** Chloride
 - ♦ Oxygen / Peroxide
 - **♦** Stress

Mitigated by:

- → Reducing water concentration
- ♦ Reducing oxygen concentration
- ♦ Reducing stress (residual and applied)
- ♦ Avoiding dewpoint

Relative Susceptibility to Cracking (ASTM G36)

No apparent sensitization following TIG welding

316 SS As-received 8 h

The Materials Corrosion and Environmental Effects Laboratory

Embrittlement of SS

Hydrogen Embrittlement

❖ Requires significant plastic deformation for H absorption. Therefore, H embrittlement is not a concern.

Radiation Embrittlement

❖ Requires fluxes 10,000 times higher than that estimated over a 50 year lifetime. Therefore, radiation embrittlement is not a concern.

Environmental Cracking Liquid Metal Ga

Gallium-induced cracking

- ♦ Preliminary tests @ 35°C indicate that liquid metal Ga embrittles 316 L SS.
- ♦ Unstable crack growth is not observed.
- \diamond Requires Ga wetting and reduction of Ga_2O_3 in the case of PuO_2 .

The Materials Corrosion and Environmental Effects Laboratory

Alloying

Pu - Fe

♦ Based on analyses by Williamson Pu - Fe alloying is not expected to affect storage container integrity. (M.A. Williamson, "Plutonium Storage: Phase Equilibria Issues", Los Alamos National Laboratory Report # LA-UR-99-136, January 1999.)

Fe - Ga

♦ Embrittlement of 304 SS is observed in 22°C tests following Ga uptake (30 -50 wt%) at 1150°C (in Ga₂O). Significant alloying of 316 SS does not appear to occur at temperatures < 200°C (1000 h) but can occur at $T \ge 300^{\circ}$ C. (L.R. Kelman et al., Argonne National Laboratory Report # ANL-4417 (1950) & P.R. Luebbers et al., Argonne National Laboratory Report # ANL-93/31. December 1993.

3013 Containers -Potential Failure Mechanisms

- **Corrosion:**
 - **♦** Ga
- \Rightarrow C
- \Rightarrow H₂O
 - → H₂O Radiolysis Products
 - ♦ Molten Salt
 - ♦ Sensitization (Thermal or)
 - Radiation-Induced)
 - ♦ Weld
 - **Embrittlement:**
 - **♦** Radiation
 - $\Leftrightarrow H_2$
 - ♦ Weld
 - **♦** Transmutation

- Environmental Cracking:
- - $H_2O/O_2/Cl^-/Cl_2/HCl$
- → Radiolysis
 - **♦** Welds
- → ♦ Ga Metal Embrittlement
 - ♦ Molten Salt
 - ♦ Sensitization (Thermal or Radiation-Induced)
 - * Alloying:
 - ♦ Ga / Fe
 - ♦ Pu / Fe

Conclusions-To-Date

Corrosion:

- ♦ Experiment: Corrosion per se does not appear to be a concern. Greatest current concern is the ability of corrosion pits to nucleate stress corrosion cracks
- ♦ Experiment: Corrosion and SCC of TIG welds does not appear to be a problem.

Embrittlement:

- ❖ Literature: Radiation flux is too low for radiation embrittlement

Conclusions-To-Date

Alloying:

♦ Literature: Pu – Fe and Ga – Fe alloying does not appear to be a concern

Stress Corrosion Cracking:

- ★ Experiment: TIG welds do not have largest effect on SCC susceptibility.

 Largest effects are carbon content and residual stress.
- ♦ SCC presents the greatest threat to container integrity. All of ingredients for SCC are present and only a small amount of reactant is needed for failure. The elimination of residual stress and water is critical to avoid SCC failure.

